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Abstract. The purpose of this paper is to prove that the functions generated by the integral operator

I( f , 1)(z) =
z∫

0

n∏
i=1

(
fi(t)
1i(t)

)γi dt are in the class of close-to-convex functions, considering the analytical functions

fi and 1i from the classes of starlike and close-to-starlike functions.

1. Introduction and Definitions

Let U = {z : |z| < 1} be the open unit disk. By A we denote the class of all analytical functions in the
open unit diskU and by S the class of univalent functions that contains all functions of the form:

f (z) = z +

∞∑
n=2

anzn (1)

which are analytic inU and satisfy the condition:

f (0) = f ′(0) − 1 = 0.

To prove our main results we will recall here some known results about some subclasses of analytical
functions. First we will recall the classes of starlike and convex functins of order α denoted by S∗(α) and
K(α) and defined by:

S∗(α) = { f ∈ A : Re
{

z f ′(z)
f (z)

}
> α, z ∈ U}

K(α) = { f ∈ A : Re
{

1 +
z f ′′(z)
f ′(z)

}
> α, z ∈ U}

for 0 ≤ α < 1.
Alexander studied for the first time the class of starlike functions in [1] and the class of convex functions
was introduced in [9], by E. Study.
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A function f ∈ A is in the class S∗(a,A) if it satisfy the condition:∣∣∣∣∣z f ′(z)
f (z)

− a
∣∣∣∣∣ < A, |a − 1| < A ≤ a, z ∈ U. (2)

We have that a > 1
2 and S∗(a,A) ⊂ S∗(a − A) ⊂ S∗(0) ≡ S∗. This class was introduced in [5] by Jakubowski.

The class K(a,A) contains all the functions f ∈ A such that:∣∣∣∣∣1 +
z f ′′(z)
f ′(z)

− a
∣∣∣∣∣ < A, |a − 1| < A ≤ a, z ∈ U. (3)

Also for this class, a > 1
2 and K(a,A) ⊂ K(a − A) ⊂ K(0) ≡ K. The relations (2) and (3) are equivalently with

Re
(

z f ′(z)
f (z)

)
> a − A, z ∈ U, |a − 1| < A ≤ a,

respectively

Re
(
1 +

z f ′′(z)
f ′(z)

)
> a − A, z ∈ U, |a − 1| < A ≤ a.

The class of close-to-convex functions contains all the functions that satisfy the condition:

θ2∫
θ1

Re
(
1 +

z f ′′(z)
f ′(z)

dθ
)
> −π

where 0 ≤ θ1 < θ2 ≤ 2π, z = reiθ and r < 1 and is denoted by Cc.
This class was studied for certain analytic functions by Owa et al. in [6].
A function belongs to Cs∗ , i.e. the class of close-to-starlike functions iff:

θ2∫
θ1

Re
z f ′(z)

f (z)
dθ > −π,

where 0 ≤ θ1 < θ2 ≤ 2π, z = reiθ and r < 1.
Shukla and Kumar introduced in [7] some subclasses of Cc and Cs∗ and proved some important results for
these.
The class Cc(β, ρ) of close-to-convex functions of order β and type ρ contains all the functions that for a
function 1 ∈ S∗(ρ) satisfies the inequality:∣∣∣∣∣∣ar1

(
z f ′(z)
1(z)

)∣∣∣∣∣∣ < βπ

2
, z ∈ U, β ∈ [0, 1].

A function f is in the class of close-to-starlike functions of order β and type ρ, denoted by Cs∗ (β, ρ) if for
some function 1 ∈ S∗(ρ) we have the following inequality:∣∣∣∣∣∣ar1

(
f (z)
1(z)

)∣∣∣∣∣∣ < βπ

2
, z ∈ U,

for β ∈ [0, 1].
Is very clear that Cc(0, ρ) = K(ρ) and Cs∗ (0, ρ) = S∗(ρ).

We consider the results proved by Shukla and Kumar in [7] about these two subclasses defined before.
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Lemma 1.1. [7] If f ∈ S∗(ρ), then

ρ(θ2 − θ1) ≤

θ2∫
θ1

Re
z f ′(z)

f (z)
dθ ≤ 2π(1 − ρ) + ρ(θ2 − θ1),

where z = reiθ and 0 ≤ θ1 ≤ θ2 ≤ 2π.

Lemma 1.2. [7] If f ∈ Cs∗ (β, ρ) then

−βπ + ρ(θ2 − θ1) ≤

θ2∫
θ1

Re
z f ′(z)

f (z)
dθ ≤ βπ + 2π(1 − ρ) + ρ(θ2 − θ1),

where z = reiθ and 0 ≤ θ1 ≤ θ2 ≤ 2π.

For the analytical functions fi, 1i and the positive real numbers γi, for i = 1,n, we consider the integral
operator:

I( f , 1)(z) =

z∫
0

n∏
i=1

(
fi(t)
1i(t)

)γi

dt, (4)

that was introduced by Ularu and Breaz in [10]. Integral operators make the subject of several articles, the
authors studying some properties for them, for example the univalence (see for example [2], [8], [4], [11]
and [3])

2. Main Results

Theorem 2.1. Let the analytical functions fi from the class S∗(ηi), 1i from the class S∗(δi), and the positive real

numbers γi, for i = 1,n. If
n∑

i=1
γi ≤ 1, then I( f , 1) is in the class of close-to-convex functions Cc.

Proof. From the definitions of I( f , 1) given in (4) by logarithmic differentions we obtain that

zI′′( f , 1)(z)
I′( f , 1)(z)

=

n∑
i=1

γi

(
z f ′i (z)

fi(z)
−

z1′i (z)

1i(z)

)
,

for i = 1,n and z ∈ U.
Using the definition of close-to-convex functions results:

θ2∫
θ1

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
dθ =

θ2∫
θ1

Re

 n∑
i=1

γi

(
z f ′i (z)

fi(z)
−

z1′i (z)

1i(z)

)
dθ + 1


=

θ2∫
θ1

n∑
i=1

γiRe
(

z f ′i (z)

fi(z)

)
dθ −

θ2∫
θ1

n∑
i=1

γiRe
(

z1′i (z)

1i(z)

)
dθ +

θ2∫
θ1

dθ.

We use the hypothesis that fi ∈ S∗(ηi) and 1i ∈ S∗(δi) and according to Lemma 1.1 it follows that:

θ2∫
θ1

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
dθ ≥

n∑
i=1

γiηi(θ2 − θ1) −
n∑

i=1

γiδi(θ2 − θ1) + (θ2 − θ1)

≥

 n∑
i=1

γi(ηi − δi) + 1

 (θ2 − θ1),
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for z ∈ U and i = 1,n. Because
n∑

i=1
γi(ηi − δi) + 1 > 0, and minimun is for θ1 = θ2, results that

θ2∫
θ1

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
> −π.

So, from the above inequality we obtain that I( f , 1) ∈ Cc.

If we consider η1 = η2 = · · · = ηn = η and δ1 = δ2 = · · · = δn = δ in Theorem 2.1 it follows:

Corollary 2.2. Let fi, 1i ∈ A and the positive real numbers γi, for i = 1,n. If fi ∈ S∗(η), 1i ∈ S∗(δ) and
n∑

i=1
γi ≤ 1,

then I( f , 1) is in the class of close-to-convex functions Cc.

Theorem 2.3. Let the analytical function fi ∈ Cs∗ , 1i ∈ S∗(δi) and γi positive real numbers, for i = 1,n. If
n∑

i=1
γi ≤ 1,

then the functions generated by the operator I( f , 1) are in the class Cc.

Proof. The proof follows the same idea as the proof of Theorem 2.1. Results that

θ2∫
θ1

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
dθ =

θ2∫
θ1

∑
γi

Re
(

z f ′i (z)

fi(z)

)
dθ −

θ2∫
θ1

n∑
i=1

γiRe
(

z1′i (z)

1i(z)

)
+

θ2∫
θ1

dθ,

for all z ∈ U and i = 1,n.
We use that fi ∈ Cs∗ , 1i ∈ S∗(δi) and from Lemma 1.1 and Lemma 1.2 it follows that:

θ2∫
θ1

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
dθ ≥ −π

n∑
i=1

γi −

n∑
i=1

γiδi(θ2 − θ1) + (θ2 − θ1)

≥ −π
n∑

i=1

γi − (θ2θ1)(
n∑

i=1

δiγi + 1),

for all z ∈ U and i = 1,n.

Because 1 −
n∑

i=1
γiδi > 0, minimum is for θ1 = θ2 we obtain that I( f , 1) ∈ Cc.

Theorem 2.4. Let the analitical functions fi, 1i and the positive real numbers γi, for all i = 1,n. If fi ∈ Cs∗ (βi, ρi), 1i ∈

Cs∗ (αi, ηi) and
n∑

i=1
γiβi ≤ 1,

n∑
i=1
γiαi ≤ 1, then the integral operator I( f , 1) is in the class Cc.

Proof. We follow the same steps as in the proofs of the above theorems, but we use that the functions fi are
from the class Cs∗ (βi, ρi) and the functions 1i are from Cs∗ (αi, ηi). Using these and applying Lemma 1.2 it
follows that:

θ2∫
θ1

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
dθ ≥

n∑
i=1

γi[(−βiπ + ρi(θ2 − θ1)) − (−αiπ + ηi(θ2 − θ1))] + (θ2 − θ1)

≥ (θ2 − θ1)

 n∑
i=1

γi(ρi − ηi) + 1

 − n∑
i=1

γiβiπ +

n∑
i=1

γiαiπ.
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Since
n∑

i=1
γi(ρi − ηi) + 1 > 0, minimum is for θ1 = θ2 and results

θ2∫
θ1

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
dθ > −π.

We obtain that I( f , 1) ∈ Cc.

If we consider β1 = β2 = · · · = βn = β and α1 = α2 = · · · = αn = αr in Theorem 2.4 we obtain:

Corollary 2.5. Let the analitical functions fi, 1i and the positive real numbers γi, for all i = 1,n. If fi ∈ Cs∗ (β, ρi), 1i ∈

Cs∗ (α, ηi) and β
n∑

i=1
γi ≤ 1, respectivelly α

n∑
i=1
γi ≤ 1, then the integral operator I( f , 1) is in the class Cc.

Remark 2.6. If we consider βi = 0 and αi = 0, for i = 1,n in Theorem 2.4 we obtain the results from Theorem 2.1.

Theorem 2.7. Let fi ∈ S∗(αi, βi), for |αi − 1| < βi ≤ αi and 1i ∈ S∗(ξi, ηi), for |ξi − 1| < ηi ≤ ξi, γi > 0 for all
i = 1,n and z ∈ U. Then the functions generated by the integral operator I( f , 1) are in the class K(ai, bi), where

ai = 1 +
n∑

i=1
γi(αi − βi), bi =

n∑
i=1
γi(ξi − ηi) and

n∑
i=1
γi(ξi − ηi − αi + βi) ≤ 1, for all i = 1,n and z ∈ U.

Proof. Using that fi ∈ S∗(αi, βi) and 1i ∈ S∗(ξi, ηi) results:

Re
(
1 +

zI′′( f , 1)(z)
I′( f , 1)(z)

)
= Re

1 +

n∑
i=1

γi

(
z f ′i (z)

fi(z)
−

z1′i (z)

1i(z)

)
= 1 +

n∑
i=1

γiRe
(

z f ′(z)
f (z)

)
−

n∑
i=1

γiRe
(

z1′i (z)

1i(z)

)

> 1 +

n∑
i=1

γi(αi − βi) −
n∑

i=1

γi(ξi − ηi).

From the above inequalitie and the definition of K(ai, bi) we obtain that I( f , 1)(z) ∈ K(ai, bi), where ai and bi
are defined as in the theorem hypothesis.

For α1 = α2 = · · · = αn = α and ξ1 = ξ2 = · · · = ξn = ξ in Theorem 2.7 we obtain:

Corollary 2.8. Let fi ∈ S∗(α, βi), for |α − 1| < βi ≤ α and 1i ∈ S∗(ξ, ηi), for |ξ − 1| < ηi ≤ ξ, γi > 0 for all
i = 1,n and z ∈ U. Then the functions generated by the integral operator I( f , 1) are in the class K(ai, bi), where

ai = 1 +
n∑

i=1
γi(α − βi), bi =

n∑
i=1
γi(ξ − ηi) and

n∑
i=1
γi(ξ − ηi − α + βi) ≤ 1, for all i = 1,n and z ∈ U.

If in Theorem 2.7 we consider γ1 = γ2 = · · · = γn = γ, then we obtain

Corollary 2.9. Let fi ∈ S∗(αi, βi), for |αi − 1| < βi ≤ αi and 1i ∈ S∗(ξi, ηi), for |ξi − 1| < ηi ≤ ξi, γ > 0 for all
i = 1,n and z ∈ U. Then the functions generated by the integral operator I( f , 1) are in the class K(ai, bi), where

ai = 1 + γ
n∑

i=1
(αi − βi), bi = γ

n∑
i=1

(ξi − ηi) and γ
n∑

i=1
(ξi − ηi − αi + βi) ≤ 1, for all i = 1,n and z ∈ U.

Theorem 2.10. Let fi ∈ S∗(αi) and 1i ∈ S∗(βi), for all i = 1,n. Then the integral operator I( f , 1) ∈ K(ai, bi), where

ai = 1 +
n∑

i=1
γiαi, bi =

n∑
i=1
γiβi and

n∑
i=1
γi(βi − αi) ≤ 1, for all i = 1,n and z ∈ U.
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Proof. The proof is similar to Theorem 2.7.

If we consider α1 = α2 = · · · = αn = α and β1 = β2 = · · · = βn = β in Theorem 2.10 results:

Corollary 2.11. Let fi ∈ S∗(α) and 1i ∈ S∗(β), for all i = 1,n. Then the integral operator I( f , 1) ∈ K(ai, bi), where

ai = 1 + α
n∑

i=1
γi, bi = β

n∑
i=1
γi and (β − α)

n∑
i=1
γi ≤ 1, for all i = 1,n and z ∈ U.
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